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Abstract
An optimization problem of minimizing the output load of a junction model with
multiple input and output channels is solved by the replica method. Simulation
results show that for the case of extensive connectivity, the replica solution
obtained by assuming a vanishing solution space is satisfactory. However, for
the case of intensive connectivity, the degeneracy of the solution space causes
the simulation results to deviate from the replica solution of vanishing volume.

PACS numbers: 64.60.Cn, 89.70.+c, 02.50.-r, 05.20.-y

An interesting topic in statistical mechanics is its applications to the study of optimization
involving an extensive number of variables. To mention a few examples, we have the
graph matching problem [1], the graph bipartitioning problem [2], the storage capacity of
perceptrons [3, 4], the K-satisfiability problem [5–7], the number partitioning problem [8]
and the noise reduction model [9]. In many cases, phase transitions were observed in these
systems, and the entropy at the critical point can be computed. The replica method [10], which
was developed from the study of spin glasses and extended to deal with systems involving a
large number of interacting variables [11, 12] has proved to provide an effective approach to
these problems.

In this paper we will apply the replica method to study the load optimization in a junction
model with randomly connected multiple inputs and outputs, and compute the minimum upper
bound of the load. This model can be applied to load balancing in computer networks, traffic
control and production line management.

While it is very interesting to consider the global optimization of the load network-wide,
its applications in networks of increasing sizes (such as the Internet) are increasingly difficult.
Hence there is a considerable shift of interest to distributed and local optimization recently,
and the present model of a single junction is thus important and relevant. Furthermore, if one
were to understand the network-wide behaviour, the properties of a single junction needs to
be studied first.
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Figure 1. A junction model with multiple input and output channels.

As shown in the junction model in figure 1, the junction A has N input and p output
channels. Both p � 1 and N � 1, and the number ratio of the output and input channels
is α = pN−1. Suppose the load on the j th input xj is normalized by

∑
j xj = N . The

junction is fed by the load from each of the inputs, and allocates them to all the outputs.
Let p(µ|j) represent the fraction of load allocated from the j th input to the µth output,
satisfying the normalization condition

∑
µ p(µ|j) = 1. Then the total load on the µth output

is
∑

j p(µ|j)xj .
In many applications, load optimization often requires the junction to adjust the input load

xj so that the load on the outputs is as uniform as possible. The optimization of traffic through
a tandem in telecommunications networks belongs to this kind of problem [13]. This can be
formulated as a linear programming problem. Specifically, one can minimize the upper bound
B of the load on the outputs, where B satisfies the condition

∑
j p(µ|j)xj � B.

When the problem under investigation involves a large number of inputs and outputs,
the method of statistical physics becomes very useful. For the present case, let us consider a
specific distribution of the probability p(µ|j). The average value of p(µ|j) is p−1. Suppose
that for a given output channel µ, there corresponds an average of C � 1 input channels
whose distributed load experience fluctuations about the background average of p−1. For
the rest of the input channels feeding µ, the distributed load is maintained at the uniform
level of p−1. To enable comparison between situations of different connectivities C, we
assume that the fluctuating load has fractional fluctuations of the order C−1/2. Specifically,
suppose p(µ|j) = (1 +C−1/2ξ

µ

j )p−1, where ξ
µ

j takes a zero value with probability 1−CN−1.
With probability CN−1, it takes a nonzero random value with mean 0 and variance 1.
Since the typical value of ξ

µ

j is of the order 1, the probability that p
µ

j becomes negative
is negligible for C � 1. Therefore, without optimizing, the mean load on the µth output is∑

j p(µ|j)xj = α−1. In general, the upper bound of the load may be larger than α−1 because
the random allocation in the junction induces fluctuations on the outputs. The purpose of the
optimization is to minimize the upper bound.

The randomness of the nonzero allocation probability affects the optimization result. The
load on the µth output is α−1 + (p

√
C)−1∑′

j xj ξ
µ

j , where
∑′ represents the summation

over the inputs with nonzero values of ξ
µ

j . The upper bound of the load can be written as
B = α−1 + bp−1. Hence the original problem can be described by the following linear
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optimization

minimize b, subject to

1√
C

N∑
j=1

ξ
µ

j xj � b µ = 1, 2, . . . , p (1)

N∑
j=1

xj = N (2)

xj � 0. (3)

This formulation is similar to the problem of storage capacity in neural networks [3,4] and the
noise reduction model [9].

Note that for p ∼ N � 1, b can be either positive or negative, and the probability that
B becomes negative is negligible since, as we shall see, b ∼ N0. Hence the objective of
optimization is to minimize the upper bound of the fluctuating component of the load, while
the average load itself is maintained at α−1. While the fluctuating components themselves
are relatively small, their optimization is still a critical issue when, for instance, the values
of the input load xj themselves represent the averages of time-varying traffic. This is the
case in telecommunications networks when the output channels are nearly saturated by the
output traffic; time-varying load may occasionally block the channels completely, leading to
a degradation in service. Minimizing the fluctuations will therefore minimize the blocking
probabilities [13].

When N goes to infinity while C remains finite, the problem belongs to a class of
infinite-ranged problems in which the local connection topology can be mapped onto tree
structures [14]. In such problems the thermodynamic variables per node (such as the free energy
per node or the entropy per node) are functions of the connectivity C. In other words, the finite
value of C remains relevant, even when C does not scale with N . Such tree-like approximations
found applications in many problems of practical interest, including graph bipartitioning [14],
diluted neural networks [15], computational logic [5–7] and error-correcting codes [16].

In the present context, each output µ is fed by an average of C inputs, each of which in
turn feeds an average of αC outputs. This maps onto a graph with nodes representing inputs
and outputs, and lines between nodes with connecting fluctuating traffic. The probability of
finding a loop of finite length m scales as CmN−m. Since this is negligible in the limit that
1 � C � N , the local topology is tree like.

Here, we will use the replica method to find the optimal value bmin for typical cases. The
result will be compared with that obtained by numerical simulation experiments using the
standard linear programming approach.

Consider the volume V in the x-space defined by conditions (1)–(3). For a given realization
of {ξµ

j }, V can be written as

V =
∫ ∞

0

N∏
j=1

dxj δ

( N∑
j=1

xj − N

) P∏
µ=1

�

(
b − 1√

C

N∑
j=1

ξ
µ

j xj

)
(4)

where � is the step function. We consider the extensive quantity ln V , i.e. the entropy of the
solution space, and calculate its ensemble average using the replica method [10–12],

〈ln V 〉 = lim
n→0

〈V n〉 − 1

n
(5)
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where 〈〉 represents averaging over the sampling of the coefficients ξ
µ

j . From (4), we have

〈V n〉 =
∫ ∞

0

n∏
α=1

N∏
j=1

dxα
j δ

( N∑
j=1

xα
j − N

)〈 n∏
α=1

p∏
µ=1

�

(
b − 1√

C

N∑
j=1

ξ
µ

j xα
j

)〉
(6)

where index α denotes the αth replica of the original system. In the limit of N → ∞, the
result is

〈V n〉 = exp[NG(E, q, q̂)] (7)

where

G(E, q, q̂) =
∑

α

Eα +
∑
r1···rn

1

r1! · · · rn!
q̂r1···rn

qr1···rn
+ ln

∏
α

∫ ∞

0
dxα

× exp

[
−
∑

α

Eαxα −
∑
r1···rn

1

r1! · · · rn!
q̂r1···rn

(x1)r1 · · · (xn)rn

]

+α ln
∏

α

∫ b

−∞
dλα

∫
dλ̂

2π
exp

[∑
α

iλ̂αλα

+C

∫
ρ(ξ)

∑
r1···rn

1

r1! · · · rn!

(
− iξ√

C

)r1+···+rn

qr1···rn
− C

]
. (8)

Here q is the order parameter

qr1r2···rn
= 1

N

N∑
j=1

(x1
j )r1(x2

j )r2 · · · (xn
j )rn (9)

E and q̂ are the Lagrange multipliers of constraints (2) and (9) respectively. They are
determined from the saddle point equations of (7). If the distribution of random variables
ξ

µ

j is an even function, then 〈ξ
∑

α rα 〉 = 0 for
∑

α rα = odd, qr1r2···rn
= q̂r1r2···rn

= 0.
In general, it is difficult to find solutions to the saddle point equations of (7). However, a

particularly simple solution exists when C � 1, for which we need only to keep components
of variables q and q̂ with

∑
α rα = 2. All the other components of q̂ are of orders C−1 or higher

and can be neglected, and (7) becomes independent of their corresponding order parameters.
Introducing the replica symmetric ansatz [10–12], there are now five distinct parameters:

(a) q2 and its corresponding Lagrange multiplier q̂2, where q2 is the average value of the mean
x2

j in the solution space, i.e.

q2 = 1

N

∑
j

〈x2
j 〉. (10)

(b) q11 and its corresponding Lagrange multiplier q̂11, where q11 is the average value of the
squared mean xj in the solution space, i.e.

q11 = 1

N

∑
j

〈xj 〉2. (11)

(c) E is the Lagrange multiplier of constraint (2).

In the present optimization problem, we are interested in the condition of taking the
minimal value for b. When C � 1, each input is connected to the many outputs and the
solution space is not degenerate. Therefore, the volume of the solution space shrinks to zero as
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Figure 2. b versus α for given values of q2 − q11. The solid curve represents the result obtained
from equations (12)–(14).

b approaches the minimal value. In this case, one should have q2 −q11 → 0 and the conjugate
q̂2 − q̂11 → ∞. In the limit n → 0, the saddle point equations of (7) become

αH

(
bmin√

q11

)
= H

(
E√
q̂11

)
(12)

q11

[∫ ∞

E/
√

q̂11

Dt

(
t − E√

q̂11

)]2

=
∫ ∞

E/
√

q̂11

Dt

(
t − E√

q̂11

)2

(13)

∫ ∞

bmin/
√

q11

Dt

(
t − bmin√

q11

)2 ∫ ∞

E/
√

q̂11

Dt

(
t − E√

q̂11

)2

= H

(
E√
q̂11

)
H

(
bmin√

q11

)
(14)

where

H(x) = 1√
2π

∫ ∞

x

e−y2/2 dy. (15)

As far as the above result is concerned, the random variable ξ
µ

j may be either the standard
Gaussian or the discrete Ising variable. Only when C ∼ O(1) does the result depend on the
specific distribution of ξ

µ

j .
Figure 2 shows the values of b versus α for given values of q2 − q11. We observe that

bmin increases from negative to positive with α, passing through the point (α, bmin) = (1, 0).
When α approaches zero, bmin approaches −√

2| ln α|/α. When α � 1, bmin approaches√
2 ln α. To illustrate the effects of optimization, we may compare this result with the upper

bound before optimization. In the unoptimized case, the load of the outputs in (1) are Gaussian
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Figure 3. Results of numerical simulations for the relation of α and b, obtained for N = 200 and
different values of C. The solid curve represents the result obtained from (12)–(14).

variables with mean 0 and variance 1. If U is the upper bound of p Gaussian variables, then
its probability is given by

P (U) = p
exp(−U 2/2)√

2π
(H(−U))p−1 . (16)

For large p, the peak of P (U) is located at U ∼ √
2 ln p, which is much larger than the

optimized bounds.
To check the validity of (12)–(14), simulations are run using the simplex method [17].

Results for N = 200 are shown in figure 3. We can see that when C is large, the simulation
results agree with the predictions of (12)–(14). However, when C decreases, significant
deviations from the theory is observed. It is interesting to note that the optimal value of
bmin is essentially 0 over a wide parameter range, whereas the theory predicts that bmin = 0
only at α = 1.

This phenomenon can be understood as a consequence of the degeneracy of the solution
space. Consider the matrix elements ξ

µ

j . For a given row µ, there are on average C nonzero
elements. Similarly, for a given column j , there are on average αC nonzero elements. Since
the choice of nonzero elements is random, the number of nonzero elements per row is Poisson
distributed. Hence with probability e−C , all elements in row µ are zero. Similarly, with
probability e−αC , all elements in column j are zero. When C becomes of the order 1, these
probabilities cannot be neglected. Hence all-zero rows or columns are present.
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When row µ is all-zero, its corresponding constraint (1) becomes 0 � b. Hence bmin

is bounded below by 0. In this case, the solution space can be seen to be degenerate by
considering the N + 1 dimension space formed by x1, . . . , xN , b. If the superspace formed by
all constraints except the µth one has a negative upper bound, then the corresponding solution
space is a convex polygon with a vertex at a negative value of b and extending to positive
infinity in b. Now if the µth constraint is included, this vertex and its vicinity is ‘chopped off’
by the plane b = 0. bmin is now 0, and the solution space is degenerate. This explains the
simulation result of a near-zero value of bmin for the range of α less than 1.

When column j is all-zero, xj does not appear in any of the p constraints (2). In this case,
the solution space contains the point xi = Nδij , corresponding to an upper bound of b = 0.
Hence bmin cannot be greater than 0. When there are more than one all-zero column j1, j2, . . . ,
the solution space corresponding to b = 0 is given by a region in the plane xj1 + xj2 + · · · = N ,
forming a degenerate space. This explains the simulation results of a near-zero value of bmin

for the range of α greater than 1.
The optimization problem discussed here is a problem in linear programming. Its solution

space is convex. Hence the optimal value of the upper bound is globally optimal. No local
minima are present, and the replica-symmetric ansatz is valid. On the other hand, if one allows
the violation of some constraints, a replica symmetry-breaking solution may be necessary.

To summarize, we have found that the replica theory embodied in equations (12)–(14)
breaks down when the connectivity C becomes intensive. The main reason is that the solution
space is degenerate, and its volume remains finite. Hence the assumption that q2 −q11 vanishes
is not valid. For a given value of α, the entropy of the solution space decreases to a finite value
when b approaches bmin, and suddenly vanishes below bmin. This is reminiscent of the first-
order transition in the K-satisfiability problem [5]. In contrast, the entropy diverges to −∞
when C � 1, which is more analogous to the second-order transition of the storage capacity
in neural networks [4].

In fact, large degrees of freedom of the solution space are common features of many
optimization problems with intensive connectivity, as illustrated by the nonvanishing entropy
in the graph bipartitioning problem [18] and the K-satisfiability problem [5]. These cases
are very different from the cases of extensive connectivity such as the storage capacity in
neural networks [3,4], and should be approached using separate methodologies and techniques.
Since the junction model is a prototype of many optimization problems which undergo phase
transitions, we anticipate that statistical mechanics will be a useful tool in these issues.

This work was supported by the grant HKUST6130/97P of the Research Grant Council of
Hong Kong and the National Natural Science Foundation of China.
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